Discrete Viscous Sheets: Supplemental Material

Christopher Batty Andres Uribe Basile Audoly Eitan Grinspun
Columbia University Columbia University UPMC Univ. Paris 06 & CNRS Columbia University

1 Derivation of Analytical Solutions

1.1 Inflation of a spherical viscous sheet.

The inflation of a spherical viscous balloon under internal pressure was used to validate our stretching forces; the analytical formula for the
expansion velocity 7 of the balloon is justified here. Because of the symmetry, the strain rate, measured in the plane tangent to the surface,
is isotropic: €, = T dap. Using our constitutive law for stretching, Nag = 2 h (éap + dap Tr €), this strain gives rise to a membrane
stress Nog =6 h f dap. The validation test is set up in conditions such that inertia is negligible. Then the expansion velocity is found by
balancing the power dissipated by viscous stress, [[ Nogéap da = 4w 2 x2x6uh (2) 2, with the power of the pressure force, 47 72 p ..
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This yields 7 = IZW.

1.2 Contraction of a spherical sheet under surface tension.
The contraction of an inviscid spherical viscous sheet was used to validate surface tension force. We derive an analytical expression for the

time evolution of such a sheet under surface tension as follows. The normal force density on a spherical surface due to surface tension is
F = 2%, which we double to account for the inner and outer surfaces. The rate of change of the sheet’s momentum is ph#, so Newton’s

2
second law gives 47” = ph#. Conservation of volume in the spherical sheet dictates h = ho :—3, and substituting this expression for h yields a
second-order linear ODE: 7° % +55 = 0forT = 2+/pho /7. For initial conditions r(0) = ro, 7(0) = 0, we find that r(¢) = ro cos (¢/T).

2 Derivation of Surface Tension Forces and Jacobians

2.1 Surface Energy

The surface energy E of the liquid sheet is equal to twice the integral of the surface area scaled by the surface tension coefficient ~.
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where A; indicates the area of triangle 4, and OS2 indicates the boundary of the liquid domain (i.e. the surface). As usual, we compute the

force from the potential energy as F' = —V E, and the force Jacobian as g—f; = —V?E . Since we assume + is constant, we will ultimately
need only the derivatives of triangle area, which we outline below.
The area A of a triangle with vertices @, l_;, C'is typically computed as:
1,7 o L
A= 5ll(b-a) x (€= a) @
or in indicial notation: ]
A= 5\/613k(b] - aj)(ck - ak)eimn(bm - am)(cn - an) (3)
We proceed to simplify this expression:
1
A= 5\/5i.7'k€imn(bj —aj)(ck — ar)(bm — am)(cn — an) C))
1
= 5\/(5jm5kn - 5J'n5km)(bj - aj)(ck - ak)(bm - am)(cn - an) 5)
1
= 5\/(53' — a;)(ck — ar)(bj — a;)(ck — ar) — (b — a;)(ck — ar)(br — ak)(c; — aj) ©)
For convenience we define:
K = (bj — a;)(ck — ak)(bj — a;)(ck — ax) — (b — a;)(cr — ax)(br — ax)(¢; — a;) ©)
so we have just
A=V ®)



2.2 Area Gradient

Next we want to compute gradients of area with respect to triangle vertex positions. We’ll first consider a generic vertex X. Then:
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Now we compute a%K for each vertex X.
i

2.2.1 Derivatives w.r.t. triangle vertices

DK = (b = a5)en — an)(bs — a5)(ex — o) = (b — a)(cx — ax) (b — aa)(es — )
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K =2(bj — a;)(ck — ax)(bj — aj)%(ck — ax)

—(bj —aj)(cx — ar)(br — ar) 0

e (¢j — ay)

(b~ a)(bx — @) (e — a5) o (cx — k)
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Converting derivatives to deltas:
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K =2(b; — aj)(cx — ar)(bj — a;)dir — (bj — a;)(cx — ar)(be — ar)di; — (bj — a;)(bk — ax)(c; — a;)dik

Eliminating deltas:

0
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K =2(b; — a;)(ci — ai)(bj — a;) — (b: — ai)(ck — ar)(brx — ax) — (bj — a;)(bi — ai)(c; — a;)
Relabelling dummy indices, and combining the last two terms we finally get:

éi,-K =2(ci — ai)(bj — a;)(bj — a;) — 2(bi — ai)(bj — a;)(¢c; — ajy)
%K =2(|[b - @’ (@—a) — (- a) - (b—a)(b— a))

By symmetry b will have a similar form...

0
0b;
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K =2le=all"(b-a) - ((b-a)- (¢~ a))(c~a))

K =2(bi — a;)(cj — a;)(c; — aj) — 2(ci — a;)(bj — a;)(c; — aj)

This just leaves a. Looking carefully at the derivatives we can see another symmetry: previously, where each derivative by ¢; of an expression
having the form (¢; — a;) gave a d;;, we now get a —d;;. Likewise where each derivative by b; of (b; — a;) gave a d;;, we now get a —d;;.

Thus we find that:
0 0 0

(Note that it is also possible to exploit purely geometric arguments and arrive at equivalent expressions.)

2.3 Area Hessian

Now we need to take the derivatives of the above gradients to compute the Hessian. The general form will be:

A1 OKOIK 1 PK
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for all pairs of vertices X; and Y. We will again be able to exploit symmetry
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The only additional work we need to do is determine Erer

to simplify some terms.



2.3.1 Derivatives of 3

Let’s start with b;.
PK
ob;0c,
=2(2(bi — ai)(er — ar) — (ci — ai)(br — ar) — (bj — a;)(c; — a;)dik)

2(2(bs — as)(cj — a;)055 — (ci — as)(bj — aj)0;k — dir(b; — az)(c; — ay))

K
Foan, = 20wl —a5)(ej —ay) — (e — ai)(e; — a;)dj)

=2((¢j — aj)(cj — a;)dik — (c; — ai)(ck — ax))

Using symmetry again, we have:

’PK [ PK N O’°K (12)
8b¢8ak - abiabk 8biack

2.4 Derivatives of 2%

First we have:

PK
A = 2(2(ei — ai)(bj — a;)d5k — (bi — ai)(c; — a;)05k — din(c; — a;)(b; — a;))
6czabk

=2(2(ci —a;) (b — ax) — (bi — ai)(cx — ax) — (¢; — a;)(b; — a;)dik)

Next:
’K )
Peder 2 (Gin(b; — a;)(bj — a;) — (bi — ai)(bj — a;)d5k)
=2((bj — a;)(bj — a;)dik — (bi — a;)(bk — ax))
And finally:
PK ([ PK | PK 13)
dc;0ar, 0c;Oby, OciOcy.
2.5 Derivatives of 3~
K PK PK
daidan <8bi8ak + 8ci8ak) 1
K _ [ PK | PK 15)

PK ([ PK | PK 16)
8ai8ck o Bbzc‘)ck 8ci8ck



